Magnesium Diboride (MgB2)-Based Bolometer Array for Far IR Thermal Imaging and Fourier Transform Spectroscopy Applications

Rationale:

- Need for more sensitive detectors:
 - Thermal mapping of cold planetary bodies
 - Study of atmospheric molecular species using Fourier Transform Spectrometer (FTS) applications.
 - Outer planets and icy satellites missions
 - Future Uranus, Neptune, Titan missions

Europa

Enceladus

FTS: Improvement in the long wavelength portion of the spectrum

- Single pixels ---FTS
- Linear array ---Push broom configuration/ thermal mapping
- 2-D array--- Far-IR camera

CIRS/Cassini instrument

What is available for far-IR investigation

- CIRS/Cassini:
 - FIR focal plane
 - Two single BiTe thermal detectors (thermopiles) operating at 170 K;
 - Each detector with a specific detectivity, D*
 3x 10⁹ cmHz^{1/2}/W near the low frequency end of a 0.4-to-30 Hz band pass.
- Commercially available pyroelectrics have a D* ~ 7x10⁸ cmHz^{1/2}/W and operate at 300K
- YBCuO has good sensitivity ~ 1x10¹⁰ cmHz^{1/2}/W
 - -But grows only on R-plane sapphire, LaAlO3...
 - -Difficult to architecture
 - Time constant ≥ 100 ms

Enceladus

Mimas

- New smaller FTS under development (J. Brasunas is PI)
- Less than ½ the mass of CIRS/Cassini
- Baselines high Tc superconduting thermal detector at far-IR focal plane
 - Magnesium diboride (MgB2)
 - Yitrium Barium Copper Oxide (YBCuO)

Parameter	CIRS	CIRS-lite
band-pass (μm)	7 to 1000	7 to 333
resolution (cm ⁻¹) apodized	0.5	0.125
telescope diameter (cm)	50	15
detectors	HgCdTe	HgCdTe
	thermopile	high Tc
detector temperature (K)	75 and 170	75 and 89
optics temperature (K)	170	~150
point-able mirror	no	TBD 1 kg
footprint (km @ 250 km)	1 & 0.05	1 & 0.4
mass (kg)	43	15 to 20

Brasunas et al.

MgB2 far-IR detector development

Our interest in MgB2:

- Simple binary, intermetallic compound as opposed to YBCuO
- Superconducts near 38 K
- Grows on Si- SiN substrates and not exclusively on R-plane Al2O3 or LaAlO3. Easy to architecture (R and bias).
- Has the desirable properties for the development of sensitive high-Tc bolometers
- Recent positive advances in deposition techniques
- Quality polycrystalline MgB2 with Tc near 38K

MgB2 on SiN pixel

Fabricated 10x10 MgB2 array (250 x 250 µm each)

Fig. 3. R, dR/dT and α as a function of corrected substrate temperature.

Thin film MgB2 bolometer with resistive meander line (no absorber)

Fig. 7. Electrical detectivity, D_e^* , as a function of frequency.

More at:

Physica C 483 (2012) 119–126

B. Lakew, S. Aslam et al.

MgB2:

- Better sensitivity than thermopiles and YBCuO
- **Better time constant**
- Easier to produce single and 2-D arrays

	Temp K	Optical Sensitivity D*
Thermopile	150-170	3x10 ⁹
YBCuO	90	1x10 ¹⁰
MgB2	38	~8.3x10 ¹⁰

In conclusion:

MgB2 is a better alternative to thermopiles and YBCuO Easier to produce using MEMS processing

Challenge: Needs a cryocooler to operate at the transition.

TRL3 + cryocooler